4 research outputs found

    Semantic levels of domain-independent commonsense knowledgebase for visual indexing and retrieval applications

    Get PDF
    Building intelligent tools for searching, indexing and retrieval applications is needed to congregate the rapidly increasing amount of visual data. This raised the need for building and maintaining ontologies and knowledgebases to support textual semantic representation of visual contents, which is an important block in these applications. This paper proposes a commonsense knowledgebase that forms the link between the visual world and its semantic textual representation. This domain-independent knowledge is provided at different levels of semantics by a fully automated engine that analyses, fuses and integrates previous commonsense knowledgebases. This knowledgebase satisfies the levels of semantic by adding two new levels: temporal event scenarios and psycholinguistic understanding. Statistical properties and an experiment evaluation, show coherency and effectiveness of the proposed knowledgebase in providing the knowledge needed for wide-domain visual applications

    The Ultrasound Window Into Vascular Ageing: A Technology Review by the VascAgeNet COST Action

    Get PDF
    Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker

    Comparative assessment of statistical and machine learning techniques towards estimating the risk of developing type 2 diabetes and cardiovascular complications

    No full text
    The aim of the present study is to comparatively assess the performance of different machine learning and statistical techniques with regard to their ability to estimate the risk of developing type 2 diabetes mellitus (Case 1) and cardiovascular disease complications (Case 2). This is the first work investigating the application of ensembles of artificial neural networks (EANN) towards producing the 5-year risk of developing type 2 diabetes mellitus and cardiovascular disease as a long-term diabetes complication. The performance of the proposed models has been comparatively assessed with the performance obtained by applying logistic regression, Bayesian-based approaches, and decision trees. The models' discrimination and calibration have been evaluated using the classification accuracy (ACC), the area under the curve (AUC) criterion, and the Hosmer–Lemeshow goodness of fit test. The obtained results demonstrate the superiority of the proposed models (EANN) over the other models. In Case 1, EANN with different topologies has achieved high discrimination and good calibration performance (ACC = 80.20%, AUC = 0.849, p value =.886). In Case 2, EANN based on bagging has resulted in good discrimination and calibration performance (ACC = 92.86%, AUC = 0.739, p value =.755). Copyright © 2017 John Wiley & Sons, Lt
    corecore